TIPOS DE REDES Y TOPOLOGIA

TIPOS DE REDES Y TOPOLOGIA

INTRODUCCIÓN
La comunicación por medio de una red se lleva a cabo en dos diferentes categorías: la capa física y la capa lógica.
La capa física incluye todos los elementos de los que hace uso un equipo para comunicarse con otros equipos dentro de la red, como, por ejemplo, las tarjetas de red, los cables, las antenas, etc.
La comunicación a través de la capa lógica se rige por normas muy rudimentarias que por sí mismas resultan de escasa utilidad. Sin embargo, haciendo uso de dichas normas es posible construir los denominados protocolos, que son normas de comunicación más complejas, capaces de proporcionar servicios que resultan útiles.
Los protocolos son un concepto muy similar al de los idiomas de las personas. Si dos personas hablan el mismo idioma, es posible comunicarse y transmitir ideas.
La razón más importante sobre por qué existe diferenciación entre la capa física y la lógica es sencilla: cuando existe una división entre ambas, es posible utilizar un número casi infinito de protocolos distintos, lo que facilita la actualización y migración entre distintas tecnologías.
DESARROLLO
¿Qué es red?
Una red de computadoras, también llamada red de ordenadores, red de comunicaciones de datos o red informática, es un conjunto de equipos informáticos y software conectados entre sí por medio de dispositivos físicos que envían y reciben impulsos eléctricos, ondas electromagnéticas o cualquier otro medio para el transporte de datos, con la finalidad de compartir información, recursos y ofrecer servicios.
Como en todo proceso de comunicación, se requiere de un emisor, un mensaje, un medio y un receptor. La finalidad principal para la creación de una red de computadoras es compartir los recursos y la información en la distancia, asegurar la confiabilidad y la disponibilidad de la información, aumentar la velocidad de transmisión de los datos y reducir el costo. Un ejemplo es Internet, la cual es una gran red de millones de computadoras ubicadas en distintos puntos del planeta interconectadas básicamente para compartir información y recursos.
La estructura y el modo de funcionamiento de las redes informáticas actuales están definidos en varios estándares, siendo el más importante y extendido de todos ellos el modelo TCP/IP basado en el modelo de referencia OSI. Este último, estructura cada red en siete capas con funciones concretas pero relacionadas entre sí; en TCP/IP se reducen a cuatro capas. Existen multitud de protocolos repartidos por cada capa, los cuales también están regidos por sus respectivos estándares.
Por qué las redes son importantes
Un equipo es una máquina que se usa para manipular datos. Los seres humanos, como seres comunicativos, comprendieron rápidamente porqué sería útil conectar equipos entre sí para intercambiar información.
Una red informática puede tener diversos propósitos:
·         Intercambio de recursos (archivos, aplicaciones o hardware, una conexión a Internet, etc.)
·         Comunicación entre personas (correo electrónico, debates en vivo, etc.)
·         Comunicación entre procesos (por ejemplo, entre equipos industriales)
·         Garantía de acceso único y universal a la información (bases de datos en red)
·         Videojuegos de varios jugadores
Las redes también se usan para estandarizar aplicaciones. El término groupware se usa generalmente para referirse a las herramientas que permiten que varias personas trabajen en una red. Por ejemplo, las agendas grupales y el correo electrónico se pueden usar para comunicar de manera más rápida y eficaz. A continuación se presenta una breve descripción de las ventajas de dichos sistemas:
·         Costos más bajos gracias al uso compartido de datos y de periféricos
·         Estandarización de aplicaciones
·         Acceso a los datos a tiempo
·         Comunicación y organización más eficaces
Actualmente, gracias a Internet, presenciamos una unificación de las redes. Por lo tanto, las ventajas de instalar una red son múltiples, ya sea para un comercio o para uso particular.
Tipos de redes
Los tipos de redes son:
·         Red de área personal (Personal Area NetworkPAN).- Es una red de computadoras usada para la comunicación entre los dispositivos de la computadora cerca de una persona.
·         Red inalámbrica de área personal (Wireless Personal Area NetworkWPAN).- Es una red de computadoras inalámbrica para la comunicación entre distintos dispositivos cercanos al punto de acceso. Estas redes normalmente son de unos pocos metros y para uso personal, así como fuera de ella. El medio de transporte puede ser cualquiera de los habituales en las redes inalámbricas pero las que reciben esta denominación son habituales en Bluetooth.
·         Red de área local (Local Area NetworkLAN).- Es una red que se limita a un área especial relativamente pequeña tal como un cuarto, un solo edificio, una nave, o un avión. Las redes de área local a veces se llaman una sola red de localización. No utilizan medios o redes de interconexión públicos.
·         Red de área local inalámbrica (Wireless Local Area NetworkWLAN).- Es un sistema de comunicación de datos inalámbrico flexible, muy utilizado como alternativa a las redes de área local cableadas o como extensión de estas.
·         Red de área de campus (Campus Area NetworkCAN).- Es una red de computadoras de alta velocidad que conecta redes de área local a través de un área geográfica limitada, como un campus universitario, una base militar, hospital, etc. Tampoco utiliza medios públicos para la interconexión.
·         Red de área metropolitana (Metropolitan Area NetworkMAN).- Es una red de alta velocidad (banda ancha) que da cobertura en un área geográfica más extensa que un campus, pero aun así limitado. Por ejemplo, una red que interconecte los edificios públicos de un municipio dentro de la localidad por medio de fibra óptica.
·         Red de área amplia (Wide Area NetworkWAN).- Son redes informáticas que se extienden sobre un área geográfica extensa utilizando medios como: satélites, cables interoceánicos, Internet, fibras ópticas públicas, etc.
·         Red de área de almacenamiento (Storage Area NetworkSAN).- Es una red concebida para conectar servidores, matrices de discos y librerías de soporte, permitiendo el tránsito de datos sin afectar a las redes por las que acceden los usuarios.

·         Red de área local virtual (Virtual LANVLAN).- Es un grupo de computadoras con un conjunto común de recursos a compartir y de requerimientos, que se comunican como si estuvieran adjuntos a una división lógica de redes de computadoras en la cual todos los nodos pueden alcanzar a los otros por medio de broadcast en la capa de enlace de datos, a pesar de su diversa localización física. Este tipo surgió como respuesta a la necesidad de poder estructurar las conexiones de equipos de un edificio por medio de software, permitiendo dividir un conmutador en varios virtuales.
TOPOLOGIAS
·         Bus: esta topología permite que todas las estaciones reciban la información que se transmite, una estación trasmite y todas las restantes escuchan.
·         Ventajas: La topología Bus requiere de menor cantidad de cables para una mayor topología; otra de las ventajas de esta topología es que una falla en una estación en particular no incapacitara el resto de la red.
·         Desventajas: al existir un solo canal de comunicación entre las estaciones de la red, si falla el canal o una estación, las restantes quedan incomunicadas. Algunos fabricantes resuelven este problema poniendo un bus paralelo alternativo, para casos de fallos o usando algoritmos para aislar las componentes defectuosas.
·         Existen dos mecanismos para la resolución de conflictos en la transmisión de datos:
·         CSMA/CD: son redes con escucha de colisiones. Todas las estaciones son consideradas igual, por ello compiten por el uso del canal, cada vez que una de ellas desea transmitir debe escuchar el canal, si alguien está transmitiendo espera a que termine, caso contrario transmite y se queda escuchando posibles colisiones, en este último espera un intervalo de tiempo y reintenta nuevamente.
·         Token Bus: Se usa un token (una trama de datos) que pasa de estación en estación en forma cíclica, es decir forma un anillo lógico. Cuando una estación tiene el token, tiene el derecho exclusivo del bus para transmitir o recibir datos por un tiempo determinado y luego pasa el token a otra estación, previamente designada. Las otras estaciones no pueden transmitir sin el token, sólo pueden escuchar y esperar su turno. Esto soluciona el problema de colisiones que tiene el mecanismo anterior.
·         Redes en Estrella: Es otra de las tres principales topologías. La red se une en un único punto, normalmente con control centralizado, como un concentrador de cableado.
·         Redes Bus en Estrella: Esta topología se utiliza con el fin de facilitar la administración de la red. En este caso la red es un bus que se cablea físicamente como una estrella por medio de concentradores.
·         Redes en Estrella Jerárquica: Esta estructura de cableado se utiliza en la mayor parte de las redes locales actuales, por medio de concentradores dispuestos en cascada para formar una red jerárquica.
·         Redes en Anillo: Es una de las tres principales topologías. Las estaciones están unidas una con otra formando un círculo por medio de un cable común. Las señales circulan en un solo sentido alrededor del círculo, regenerándose en cada nodo.
·         Token Ring: La estación se conecta al anillo por una unidad de interfaz (RIU), cada RIU es responsable de controlar el paso de los datos por ella, así como de regenerar la transmisión y pasarla a la estación siguiente. Si la dirección de cabecera de una determinada transmisión indica que los datos son para una estación en concreto, la unidad de interfaz los copia y pasa la información a la estación de trabajo conectada a la misma. Se usa en redes de área local con o sin prioridad, el token pasa de estación en estación en forma cíclica, inicialmente en estado desocupado. Cada estación cuando tiene el token (en este momento la estación controla el anillo),  si quiere transmitir cambia su estado ha ocupado, agregando los datos atrás y lo pone en la red, caso contrario pasa el token a la estación siguiente. Cuando el token pasa de nuevo por la estación que transmitió, saca los datos, lo pone en desocupado y lo regresa a la red.
PROTOCOLOS
Características
 Un protocolo es el conjunto de normas para comunicarse dos o más entidades. Los elementos que definen un protocolo son:
·         Sintaxis: formato, codificación y niveles de señal de datos.
·         Semántica: información de control y gestión de errores.
·         Temporización: coordinación entre la velocidad y orden secuencial de las señales.
Las características más importantes de un protocolo son:
·         Directo/indirecto: los enlaces punto a punto son directos pero los enlaces entre dos entidades en diferentes redes son indirectos ya que intervienen elementos intermedios.
·         Monolítico/estructurado: monolítico es aquel en que el emisor tiene el control en una sola capa de todo el proceso de transferencia. En protocolos estructurados, hay varias capas que se coordinan y que dividen la tarea de comunicación.
·         Simétrico/asimétrico: los simétricos son aquellos en que las dos entidades que se comunican son semejantes en cuanto a poder tanto emisores como consumidores de información. Un protocolo es asimétrico si una de las entidades tiene funciones diferentes de la otra.
 Funciones
1.    Segmentación y ensamblado: generalmente es necesario dividir los bloques de datos en unidades pequeñas e iguales en tamaño, y este proceso se le llama segmentación. El bloque básico de segmento en una cierta capa de un protocolo se le llama PDU.
2.    Encapsulado: se trata del proceso de adherir información de control al segmento de datos. Esta información de control es el direccionamiento del emisor/receptor, código de detección de errores y control de protocolo.
3.    Control de conexión: hay bloques de datos sólo de control y otros de datos y control. Cuando se utilizan datagramas, todos los bloques incluyen control y datos ya que cada PDU se trata como independiente. En circuitos virtuales hay bloques de control que son los encargados de establecer la conexión del circuito virtual. Hay protocolos más sencillos y otros más complejos, por lo que los protocolos de los emisores y receptores deben de ser compatibles al menos. Además de la fase de establecimiento de conexión está la fase de transferencia y la de corte de conexión. Si se utilizan circuitos virtuales habrá que numerar los PDU y llevar un control en el emisor y en el receptor de los números.
4.    Entrega ordenada: el envío de PDU puede acarrear el problema de que si hay varios caminos posibles, lleguen al receptor PDU desordenados o repetidos, por lo que el receptor debe de tener un mecanismo para reordenar los PDU. Hay sistemas que tienen un mecanismo de numeración con módulo algún número; esto hace que el módulo sean lo suficientemente alto como para que sea imposible que haya dos segmentos en la red al mismo tiempo y con el mismo número.
5.    Control de flujo: hay controles de flujo de parada y espera o de ventana deslizante. El control de flujo es necesario en varios protocolos o capas, ya que el problema de saturación del receptor se puede producir en cualquier capa del protocolo.
6.    Control de errores: generalmente se utiliza un temporizador para retransmitir una trama una vez que no se ha recibido confirmación después de expirar el tiempo del temporizador. Cada capa de protocolo debe de tener su propio control de errores.
7.    Direccionamiento: cada estación o dispositivo intermedio de almacenamiento debe tener una dirección única. A su vez, en cada terminal o sistema final puede haber varios agentes o programas que utilizan la red, por lo que cada uno de ellos tiene asociado un puerto.
Conclusión
A lo largo del tiempo se han ido inovando los tipos de redes y sus topologias para hacer la comunicacion entre computadoras más rapidas, baratas y sin menos problemas o desventajas, por lo que es necesario que sigan existiendo este tipo de avances para que asi se pueda llegar a un nivel más alto de velocidad.
Referencias

No hay comentarios.:

Publicar un comentario